Machine Speed Scaling by Adapting Methods for Convex Optimization with Submodular Constraints

نویسندگان

  • Akiyoshi Shioura
  • Natalia V. Shakhlevich
  • Vitaly A. Strusevich
چکیده

In this paper, we propose a new methodology for the speed scaling problem based on its link to scheduling with controllable processing times and submodular optimization. It results in faster algorithms for traditional speed scaling models, characterized by a common speed/energy function. In addition, it handles e¢ciently the most general models with job-dependent speed/energy functions, with a single and multiple machines, which to the best of our knowledge have not been addressed prior to this study. In particular, the general version of the single-machine case is solvable by the new technique in () time.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Structured Convex Optimization under Submodular Constraints

A number of discrete and continuous optimization problems in machine learning are related to convex minimization problems under submodular constraints. In this paper, we deal with a submodular function with a directed graph structure, and we show that a wide range of convex optimization problems under submodular constraints can be solved much more efficiently than general submodular optimizatio...

متن کامل

Projection-Free Online Optimization with Stochastic Gradient: From Convexity to Submodularity

Online optimization has been a successful framework for solving large-scale problems under computational constraints and partial information. Current methods for online convex optimization require either a projection or exact gradient computation at each step, both of which can be prohibitively expensive for large-scale applications. At the same time, there is a growing trend of non-convex opti...

متن کامل

Capacity scaling algorithm for scalable M-convex submodular flow problems

An M-convex function is a nonlinear discrete function defined on integer points introduced by Murota in 1996, and the M-convex submodular flow problem is one of the most general frameworks of efficiently solvable combinatorial optimization problems. It includes the minimum cost flow and the submodular flow problems as its special cases. In this paper, we first devise a successive shortest path ...

متن کامل

Learning with Submodular Functions: A Convex Optimization Perspective

Submodular functions are relevant to machine learning for at least two reasons: (1) some problems may be expressed directly as the optimization of submodular functions and (2) the Lovász extension of submodular functions provides a useful set of regularization functions for supervised and unsupervised learning. In this monograph, we present the theory of submodular functions from a convex analy...

متن کامل

Some Results about the Contractions and the Pendant Pairs of a Submodular System

Submodularity is an important  property of set functions with deep theoretical results  and various  applications. Submodular systems appear in many applicable area, for example machine learning, economics, computer vision, social science, game theory and combinatorial optimization.  Nowadays submodular functions optimization has been attracted by many researchers.  Pendant pairs of a symmetric...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • INFORMS Journal on Computing

دوره 29  شماره 

صفحات  -

تاریخ انتشار 2017